A NOTE ON BREDA-ROBERTSON'S CONJECTURE

CATARINA P. AVELINO and ALTINO F. SANTOS

Department of Mathematics University of Trás-os-Montes and Alto Douro 5001-801 Vila Real Portugal e-mail: cavelino@utad.pt

Abstract

The continuous deformation of any spherical isometric folding into the standard spherical folding, f_s , defined by $f_s(x, y, z) = (x, y, |z|)$, remains an open problem since 1989. We show that this conjecture is restricted to the class of primitive foldings and it is exhibited a spherical folding within this class, where the difficulty of deformation is evidenced.

1. Introduction

The theory of isometric foldings was introduced in 1977 by Robertson [4]. It emerged as a formulation, in the language of Riemannian geometry, of the physical action of crumpling a sheet of paper and then crushing it flat against a desk top. For related work, see also [5].

2010 Mathematics Subject Classification: 52C20, 57Q55, 55P10, 52B05.

Keywords and phrases: isometric folding, spherical f-tiling, homotopy.

The authors acknowledge the financial support from the Portuguese Government through the FCT -Fundação para a Ciência e a Tecnologia, project PEst-OE/MAT/UI4080/2011.

Received February 28, 2012

© 2012 Scientific Advances Publishers

The intrinsic geometry of crumpling-crushing process can be modelled mathematically by regarding both the paper and the desk top as two dimensional flat Riemannian manifolds M and N, respectively, and by representing the process itself as a map, $f:M\to N$, which sends piecewise geodesic segments to piecewise geodesic segments of the same length, Figure 1. The same definition applies for the general situation, where M and N are Riemannian manifolds of any dimension.

Figure 1. A planar isometric folding.

This class of maps can be formally defined as follows.

Considering a smooth (C^{∞}) Riemannian manifold M, a map $\alpha: I = [a,b] \to M$ is a zig-zag on M, if there exists a subdivision, $a = a_0 < a_1 < \dots < a_r = b$ of I, such that for all $j = 1, \dots, r$, the restriction $\alpha_j = \alpha|_{[a_{j-1},a_j]}$ is a geodesic segment on M parameterized by

arc-length. Thus, the length of
$$\alpha$$
 is $L(\alpha) = \sum_{j=1}^{r} L(\alpha_j) = b - a$.

Definition 1.1. Let M and N be smooth connected Riemannian manifolds of finite dimensions. A map $f: M \to N$ is said to be an isometric folding of M into N if, for every zig-zag $\alpha: I \to M$, the induced path $\alpha_* = f \circ \alpha: I \to N$ is a zig-zag on N. It follows that $L(\alpha) = L(\alpha_*)$.

Our interest is focused in the set of isometric foldings of the Riemannian sphere, $\mathcal{F}(S^2)$.

Definition 1.2. Let $f, g \in \mathcal{F}(S^2)$. We shall say that f is deformable into g, if there exists a map, (homotopy) $H : [0, 1] \times S^2 \to S^2$, such that

- (i) *H* is continuous;
- (ii) for each $t \in [0, 1]$, H_t defined by $H_t(x) = H(t, x)$, $x \in S^2$, is an isometric folding;

(iii)
$$H(0, x) = f(x)$$
 and $H(1, x) = g(x)$, $\forall x \in S^2$.

Considering the compact open topology on $\mathcal{F}(S^2)$, then f is deformable in g iff they belong to the same path connected component.

A point $x \in S^2$, where the isometric folding $f: S^2 \to S^2$ fails to be differentiable is called a *singularity* of f. The set of all singularities of f is denoted by $\sum f$. An isometric folding f is said to be *non trivial* if $\sum f \neq \emptyset$, i.e., f is not an isometry of S^2 .

The $standard\ spherical\ isometric\ folding,$ denoted by f_s , is defined by

$$f_s(x, y, z) = (x, y, |z|), \quad \forall (x, y, z) \in S^2.$$

A general description of Σf , for any $f \in \mathcal{F}(S^2)$, was given by Robertson in [4]. This description can be stated as follows: For each $x \in \Sigma f$, the singularities of f near x form the image of an even number of geodesic rays emanating from x and making alternated angles $\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_n, \beta_n$, where

$$\sum_{j=1}^{n} \alpha_j = \sum_{j=1}^{n} \beta_j = \pi. \tag{1.1}$$

In other words, the singularity set of an isometric folding in S^2 can be seen as an embedded graph of even valency satisfying the angle folding relation (1.1). In Figure 2 is illustrated a singularity set near a vertex of valency six.

Figure 2. The angle folding relation (with n = 3).

The compactness of the sphere assures that the singularity set of any spherical isometric folding (as an embedded graph of S^2) is connected with finitely many regions.

Definition 1.3. By a spherical folding tiling (f-tiling, for short), we mean an edge-to-edge finite polygonal-tiling τ of S^2 , whose underlying graph is of the type described in (1.1).

We shall denote by $\mathcal{T}(S^2)$, the set of all f-tilings of S^2 , identifying the singularity sets of non-trivial foldings with spherical f-tilings.

In [1], it was established that any non-trivial isometric folding (with Hopf degree zero) in the Euclidian plane is deformable into the *standard* planar folding $f: \mathbb{R}^2 \to \mathbb{R}^2$, defined by f(x, y) = (x, |y|) and was conjectured that

any non-trivial spherical isometric folding is deformable into f_s . (1.2)

This statement is known as the Breda-Robertson's conjecture. It should be pointed out that a proof given for the sphere can not be a simple adaptation from the one used for the plane, since here the dilatations had played a crucial role.

2. Deformation on $\mathcal{F}(S^2)$

Let f and $g \in \mathcal{F}(S^2)$. The set of singularities, $\sum f$, determines, up to an isometry, the associated spherical isometric folding, f, as seen in [3]. In other words, $\sum f = \sum g$ iff there exists a spherical isometry i, such that $g = i \circ f$. On the other hand, a deformation H of f into g induces a deformation on its sets of singularities and reciprocally.

Proposition 2.1. Let $f, g \in \mathcal{F}(S^2)$. If f and g are deformable into f_s , then $f \circ g$ is deformable into f_s .

Proof. The result follows observing that if H_1 is a deformation of f into f_s and H_2 is a deformation of g into f_s , then $H:[0,1]\times S^2\to S^2$, defined by $H(t,x)=H_2(t,H_1(t,x))$ is a deformation of $f\circ g$ into $f_s\circ f_s=f_s$.

The classification of spherical dihedral f-tilings started in 2004. It was proved that, there are exactly five f-tilings, namely, R^3 , U_1 , U_2 , U_3 , $U_4 \in \mathcal{T}(S^2)$ (with the notation used in [2]), with prototiles an isosceles spherical triangle T of angles $(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{3})$ and a spherical rhombus Q with opposite pairs of angles $(\frac{2\pi}{3}, \frac{\pi}{2})$, see Figure 3.

Figure 3. The dihedral f-tilings of the sphere with prototiles Q and T.

An isometric folding $f \in \mathcal{F}(S^2)$ is said to be *simple*, if $\sum f$ is a great circle of S^2 . In [3], it was proved that if f is of the form $f = f_1 \circ \cdots \circ f_n$, where each $f_i(i = 1, ..., n)$ is a simple isometric folding, then f is deformable into f_s .

Proposition 2.2. The isometric foldings associated to the spherical tilings R^3 , U_1 , U_3 , and U_4 verify the Breda-Robertson's conjecture (1.2).

Proof. Let ϕ , ψ_1 , ψ_3 , and ψ_4 be the spherical isometric foldings with set of singularities the f-tilings R^3 , U_1 , U_3 , and U_4 , respectively.

We show that ϕ and ψ_i , i=1,3,4, are finite compositions of simple foldings. It should be noted that if $f=g\circ h$, for some non-trivial isometric foldings g and h, then $\sum f=\sum h \cup h^{-1}(\sum g)$.

In Figure 4, we present a geometrical sketch to prove that ϕ is composition of five simple foldings, namely, f_1 , f_2 , f_3 , f_4 , and f_5 . We illustrate step by step the spherical f-tiling correspondent to the set of singularities of f_1 , $f_2 \circ f_1$, $f_3 \circ f_2 \circ f_1$, $f_4 \circ f_3 \circ f_2 \circ f_1$, and $\phi = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$.

The arrows indicate the way we should move vertices and edges allowing each folding to be joined to the standard one.

Figure 4. The singularity set $\Sigma \phi = R^3$, with $\phi = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$.

The isometric folding ψ_1 can also be seen as a composition of five simple foldings, namely, f_1^1 , f_2^1 , f_3^1 , f_4^1 , and f_5^1 . The set of singularities is

illustrated step by step in Figure 5. As before, a geometrical sketch through arrows could be presented in order to illustrate the deformation.

Figure 5. The singularity set $\sum \psi_1 = U_1$, with $\psi_1 = f_5^1 \circ f_4^1 \circ f_3^1 \circ f_2^1 \circ f_1^1$.

A similar procedure helps us to show that $\psi_3 = f_5^3 \circ f_4^3 \circ f_3^3 \circ f_2^3 \circ f_1^3$, for some simple foldings f_1^3 , f_2^3 , f_3^3 , f_4^3 , and f_5^3 , see Figure 6.

Figure 6. The singularity set $\sum \psi_3 = U_3$, with $\psi_3 = f_5^3 \circ f_4^3 \circ f_3^3 \circ f_2^3 \circ f_1^3$.

Finally, we prove that ψ_4 is composition of the simple foldings f_1^4 , f_2^4 , f_3^4 , and f_4^4 . The singularity set is exhibited in Figure 7.

Figure 7. The singularity set $\sum \psi_4 = U_4$, with $\psi_4 = f_4^4 \circ f_3^4 \circ f_2^4 \circ f_1^4$.

Definition 2.1. A non-trivial isometric folding $f \in \mathcal{F}(S^2)$ is said to be *primitive*, if there are no g, h non-trivial distinct spherical isometric foldings, such that $f = g \circ h$. Otherwise, f is called *non-primitive*.

By Proposition 2.1, the deformation stated in (1.2) is solved if any primitive folding is deformable into f_s .

Proposition 2.3. If $f \in \mathcal{F}(S^2)$ is non-primitive, then $\sum f$ contains a proper sub-f-tiling. In other words, there is a subgraph Γ of $\sum f$ such that $\emptyset \neq \Gamma \subset \sum_{\mathcal{F}} f$ and $\sum f \setminus \Gamma$ is an f-tiling.

Proof. Suppose that $f = g \circ h$, for some non-trivial distinct isometric foldings g and h. As $\sum f = \sum h \cup h^{-1}(\sum g)$ and considering $\Gamma = h^{-1}(\sum g)$, we conclude that $\sum f \setminus \Gamma = \sum h$ is an f-tiling.

Remark 1. If $f = f_n \circ \cdots \circ f_1$, for some $f_i \in \mathcal{F}(S^2)$, then

$$\Sigma(f_n \circ \cdots \circ f_2 \circ f_1) = \underbrace{\sum f_1}_{\Sigma_1} \cup \underbrace{f_1^{-1}(\sum f_2)}_{\Sigma_2} \cup \underbrace{(f_2 \circ f_1)^{-1}(\sum f_3)}_{\Sigma_3}$$
$$\cup \dots \cup \underbrace{(f_{n-1} \circ \cdots \circ f_1)^{-1}(\sum f_n)}_{\Sigma_n}.$$

Denoting by

$$\Sigma_1=\Sigma\,f_1$$
 and $\Sigma_k=(f_{k-1}\circ\cdots\circ f_1)^{-1}(\,\Sigma\,f_k\,),$ $k=2,\,\ldots,\,n,$ one gets the sub-f-tilings

$$\tau_k = \bigcup_{i=1}^k \Sigma_i, \quad k = 1, \dots, n.$$

The reciprocal of Proposition 2.3 is false. In Figure 8-I is illustrated the set of singularities of a primitive spherical isometric folding containing a sub-f-tiling, as shown in Figure 8-II.

Figure 8. A primitive isometric folding with a sub-f-tiling.

Consider the f-tiling $U_2 \in \mathcal{T}(S^2)$ with prototiles Q and T (Figure 3) and let e be an edge of U_2 . Then, a subgraph $\Gamma \subset U_2$ containing e, such that $U_2 \setminus \Gamma$ is an f-tiling, does not exist. And so, by Proposition 2.3, any isometric folding with set of singularities U_2 is primitive.

It follows that if $f \in \mathcal{F}(S^2)$, such that $\sum f = U_2$, then there is no deformation of f into f_s , in the sense of moving vertices and edges as done in Proposition 2.2. In fact, any perturbation on vertices break the angle folding relation (1.1).

References

- A. M. d'Azevedo Breda, Isometric Foldings, PhD Thesis, University of Southampton, U.K., 1989.
- [2] A. M. d'Azevedo Breda and A. F. Santos, Dihedral f-tilings of the sphere by rhombi and triangles, Discrete Mathematics and Theoretical Computer Science 7 (2005), 123-140.

- [3] A. M. d'Azevedo Breda and A. F. Santos, On deformations of spherical isometric foldings, Czechoslovak Mathematical Journal 60(1) (2010), 149-159.
- [4] S. A. Robertson, Isometric folding of Riemannian manifolds, Proc. R. Soc. Edinb. A 79 (1977), 275-284.
- [5] M. J. Sewell, Complementary Energy and Catastrophes, MRC Tech. Summ. Report 1984, Univ. of Wisconsin – Madison Mathematics Research Center, 1978.