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Abstract 

The continuous deformation of any spherical isometric folding into the   
standard spherical folding, ,sf  defined by ( ) ( ) ,,,,, zyxzyxfs =  remains an 

open problem since 1989. We show that this conjecture is restricted to the class 
of primitive foldings and it is exhibited a spherical folding within this class, 
where the difficulty of deformation is evidenced. 

1. Introduction 

The theory of isometric foldings was introduced in 1977 by Robertson 
[4]. It emerged as a formulation, in the language of Riemannian 
geometry, of the physical action of crumpling a sheet of paper and then 
crushing it flat against a desk top. For related work, see also [5]. 
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The intrinsic geometry of crumpling-crushing process can be modelled 
mathematically by regarding both the paper and the desk top as two 
dimensional flat Riemannian manifolds M and N, respectively, and by 
representing the process itself as a map, ,: NMf →  which sends 

piecewise geodesic segments to piecewise geodesic segments of the same 
length, Figure 1. The same definition applies for the general situation, 
where M and N are Riemannian manifolds of any dimension. 

 

Figure 1. A planar isometric folding. 

This class of maps can be formally defined as follows. 

Considering a smooth ( )∞C  Riemannian manifold M, a map 

[ ] MbaI →=α ,:  is a zig-zag on M, if there exists a subdivision, 

baaaa r =<<<= "10  of I, such that for all ,,,1 rj …=  the 

restriction [ ]jj aaj ,1−
α=α  is a geodesic segment on M parameterized by 

arc-length. Thus, the length of α  is ( ) ( ) .
1
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j
−=α=α ∑
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Definition 1.1. Let M and N be smooth connected Riemannian 
manifolds of finite dimensions. A map NMf →:  is said to be an 

isometric folding of M into N if, for every zig-zag ,: MI →α  the induced 

path NIf →α=α∗ :D  is a zig-zag on N. It follows that ( ) ( ).∗α=α LL  
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Our interest is focused in the set of isometric foldings of the 

Riemannian sphere, ( ).2SF  

Definition 1.2. Let ( )., 2Sgf F∈  We shall say that f is deformable 

into g, if there exists a map, (homotopy) [ ] ,1,0: 22 SSH →×  such that 

(i) H is continuous; 

(ii) for each [ ] tHt ,1,0∈  defined by ( ) ( ) ,,, 2SxxtHxHt ∈=  is an 

isometric folding; 

(iii) ( ) ( )xfxH =,0  and ( ) ( ) .,,1 2SxxgxH ∈∀=  

Considering the compact open topology on ( ),2SF  then f is 

deformable in g iff they belong to the same path connected component. 

A point ,2Sx ∈  where the isometric folding 22: SSf →  fails to be 

differentiable is called a singularity of f. The set of all singularities of f is 
denoted by .f∑  An isometric folding f is said to be non trivial if ,0/≠∑ f  

i.e., f is not an isometry of .2S  

The standard spherical isometric folding, denoted by ,sf  is defined by 

( ) ( ) ( ) .,,,,,,, 2Szyxzyxzyxfs ∈∀=  

A general description of ,f∑  for any ( ),2Sf F∈  was given by 

Robertson in [4]. This description can be stated as follows: For each 
,fx ∑∈  the singularities of f near x form the image of an even number of 

geodesic rays emanating from x and making alternated angles 
,,,,,,, 2211 nn βαβαβα …  where 

.
11

π=β=α ∑∑
==

j

n

j
j

n

j
  (1.1) 
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In other words, the singularity set of an isometric folding in 2S  can be 
seen as an embedded graph of even valency satisfying the angle folding 
relation (1.1). In Figure 2 is illustrated a singularity set near a vertex of 
valency six. 

 

Figure 2. The angle folding relation (with n = 3). 

The compactness of the sphere assures that the singularity set of any 

spherical isometric folding (as an embedded graph of 2S ) is connected 
with finitely many regions. 

Definition 1.3. By a spherical folding tiling (f-tiling, for short), we 

mean an edge-to-edge finite polygonal-tiling τ  of ,2S  whose underlying 
graph is of the type described in (1.1). 

We shall denote by ( ),2ST  the set of all f-tilings of ,2S  identifying 
the singularity sets of non-trivial foldings with spherical f-tilings. 

In [1], it was established that any non-trivial isometric folding (with 
Hopf degree zero) in the Euclidian plane is deformable into the standard 

planar folding ,: 22 RR →f  defined by ( ) ( )yxyxf ,, =  and was 
conjectured that 

any non-trivial spherical isometric folding is deformable into .sf   (1.2) 

This statement is known as the Breda-Robertson’s conjecture. It 
should be pointed out that a proof given for the sphere can not be a 
simple adaptation from the one used for the plane, since here the 
dilatations had played a crucial role. 
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2. Deformation on ( )2SF  

Let f and ( ).2Sg F∈  The set of singularities, ,f∑  determines, up to 

an isometry, the associated spherical isometric folding, f, as seen in [3]. In 
other words, gf ∑=∑  iff there exists a spherical isometry i, such that 

.fig D=  On the other hand, a deformation H of f into g induces a 

deformation on its sets of singularities and reciprocally. 

Proposition 2.1. Let ( )., 2Sgf F∈  If f and g are deformable into 

,sf  then gf D  is deformable into .sf  

Proof. The result follows observing that if 1H  is a deformation of f 

into sf  and 2H  is a deformation of g into ,sf  then [ ] ,1,0: 22 SSH →×  

defined by ( ) ( ( ))xtHtHxtH ,,, 12=  is a deformation of gf D  into 

.sss fff =D   

The classification of spherical dihedral f-tilings started in 2004. It was 

proved that, there are exactly five f-tilings, namely, ,,,, 321
3 UUUR  

( )2
4 SU T∈  (with the notation used in [2]), with prototiles an isosceles 

spherical triangle T of angles ( )3,3,2
πππ  and a spherical rhombus Q 

with opposite pairs of angles ( ),2,3
2 ππ  see Figure 3. 

 

Figure 3. The dihedral f-tilings of the sphere with prototiles Q and T. 
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An isometric folding ( )2Sf F∈  is said to be simple, if f∑  is a great 

circle of .2S  In [3], it was proved that if f is of the form ,1 nfff D"D=  

where each ( )nifi ,,1 …=  is a simple isometric folding, then f is 

deformable into .sf  

Proposition 2.2. The isometric foldings associated to the spherical 

tilings ,,, 31
3 UUR  and 4U  verify the Breda-Robertson’s conjecture (1.2). 

Proof. Let ,,, 31 vv //φ  and 4v/  be the spherical isometric foldings with 

set of singularities the f-tilings ,,, 31
3 UUR  and ,4U  respectively. 

We show that φ  and ,4,3,1, =/ ivi  are finite compositions of simple 

foldings. It should be noted that if ,hgf D=  for some non-trivial 

isometric foldings g and h, then ( ).1 ghhf ∑∑=∑ −∪  

In Figure 4, we present a geometrical sketch to prove that φ  is 

composition of five simple foldings, namely, ,,,, 4321 ffff  and .5f  We 

illustrate step by step the spherical f-tiling correspondent to the set of 
singularities of ,,,, 1234123121 ffffffffff DDDDDD  and DDD 345 fff=φ  

.12 ff D  

The arrows indicate the way we should move vertices and edges 
allowing each folding to be joined to the standard one. 

 

Figure 4. The singularity set ,3R=φ∑  with .12345 fffff DDDD=φ  

The isometric folding 1v/  can also be seen as a composition of five 

simple foldings, namely, ,,,, 1
4

1
3

1
2

1
1 ffff  and .1

5f  The set of singularities is 
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illustrated step by step in Figure 5. As before, a geometrical sketch 
through arrows could be presented in order to illustrate the deformation. 

 

Figure 5. The singularity set ,11 Uv =/∑  with .1
1

1
2

1
3

1
4

1
51 fffffv DDDD=/  

A similar procedure helps us to show that ,3
1

3
2

3
3

3
4

3
53 fffffv DDDD=/  

for some simple foldings ,,,, 3
4

3
3

3
2

3
1 ffff  and ,3

5f  see Figure 6. 

 

Figure 6. The singularity set ,33 Uv =/∑  with .3
1

3
2

3
3

3
4

3
53 fffffv DDDD=/  

Finally, we prove that 4v/  is composition of the simple foldings ,4
1f  

,, 4
3

4
2 ff  and .4

4f  The singularity set is exhibited in Figure 7. 

 

Figure 7. The singularity set ,44 Uv =/∑  with .4
1

4
2

4
3

4
44 ffffv DDD=/  

 
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Definition 2.1. A non-trivial isometric folding ( )2Sf F∈  is said to 
be primitive, if there are hg,no  non-trivial distinct spherical isometric 
foldings, such that .hgf D=  Otherwise, f is called non-primitive. 

By Proposition 2.1, the deformation stated in (1.2) is solved if any 
primitive folding is deformable into .sf  

Proposition 2.3. If ( )2Sf F∈  is non-primitive, then f∑  contains a 

proper sub-f-tiling. In other words, there is a subgraph Γ  of f∑  such that 
f∑⊂Γ≠/

≠
0  and Γ∑ \f  is an f-tiling. 

Proof. Suppose that ,hgf D=  for some non-trivial distinct isometric 

foldings g and h. As ( )ghhf ∑∑=∑ −1∪  and considering ( ),1 gh ∑=Γ −  
we conclude that hf ∑=Γ∑ \  is an f-tiling.  

Remark 1. If ,1fff n D"D=  for some ( ),2Sfi F∈  then 

( ) N ( ) ( ) ( )��� 
��� 	� D∪�
�	�∪DD"D

321

3
1

122
1

1112
∑

−

∑

−

∑

∑∑∑=∑ fffffffffn  

( ) ( ).1
11 ���� 
���� 	� D"D∪…∪

n

nn fff
∑

−
− ∑  

Denoting by 

( ) ( ) ,,,2,and 1
1111 nkffff kkk …D"D =∑=∑∑=∑ −

−  

one gets the sub-f-tilings 

.,,1,
1

nki

k

i
k …∪ =∑=

=

τ  

The reciprocal of Proposition 2.3 is false. In Figure 8-I is illustrated 
the set of singularities of a primitive spherical isometric folding 
containing a sub-f-tiling, as shown in Figure 8-II. 
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Figure 8. A primitive isometric folding with a sub-f-tiling. 

Consider the f-tiling ( )2
2 SU T∈  with prototiles Q and T (Figure 3) 

and let e be an edge of .2U  Then, a subgraph 2U
≠
⊂Γ  containing e, such 

that Γ\2U  is an f-tiling, does not exist. And so, by Proposition 2.3, any 

isometric folding with set of singularities 2U  is primitive. 

It follows that if ( ),2Sf F∈  such that ,2Uf =∑  then there is no 

deformation of f into ,sf  in the sense of moving vertices and edges as 

done in Proposition 2.2. In fact, any perturbation on vertices break the 
angle folding relation (1.1). 
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